3.575 \(\int (a+b \sin ^n(c+d x))^2 \tan ^m(c+d x) \, dx\)

Optimal. Leaf size=215 \[ \frac{a^2 \tan ^{m+1}(c+d x) \, _2F_1\left (1,\frac{m+1}{2};\frac{m+3}{2};-\tan ^2(c+d x)\right )}{d (m+1)}+\frac{2 a b \cos ^2(c+d x)^{\frac{m+1}{2}} \tan ^{m+1}(c+d x) \sin ^n(c+d x) \, _2F_1\left (\frac{m+1}{2},\frac{1}{2} (m+n+1);\frac{1}{2} (m+n+3);\sin ^2(c+d x)\right )}{d (m+n+1)}+\frac{b^2 \cos ^2(c+d x)^{\frac{m+1}{2}} \tan ^{m+1}(c+d x) \sin ^{2 n}(c+d x) \, _2F_1\left (\frac{m+1}{2},\frac{1}{2} (m+2 n+1);\frac{1}{2} (m+2 n+3);\sin ^2(c+d x)\right )}{d (m+2 n+1)} \]

[Out]

(a^2*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, -Tan[c + d*x]^2]*Tan[c + d*x]^(1 + m))/(d*(1 + m)) + (2*a*b*(C
os[c + d*x]^2)^((1 + m)/2)*Hypergeometric2F1[(1 + m)/2, (1 + m + n)/2, (3 + m + n)/2, Sin[c + d*x]^2]*Sin[c +
d*x]^n*Tan[c + d*x]^(1 + m))/(d*(1 + m + n)) + (b^2*(Cos[c + d*x]^2)^((1 + m)/2)*Hypergeometric2F1[(1 + m)/2,
(1 + m + 2*n)/2, (3 + m + 2*n)/2, Sin[c + d*x]^2]*Sin[c + d*x]^(2*n)*Tan[c + d*x]^(1 + m))/(d*(1 + m + 2*n))

________________________________________________________________________________________

Rubi [A]  time = 0.295359, antiderivative size = 215, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {3234, 3476, 364, 2602, 2577} \[ \frac{a^2 \tan ^{m+1}(c+d x) \, _2F_1\left (1,\frac{m+1}{2};\frac{m+3}{2};-\tan ^2(c+d x)\right )}{d (m+1)}+\frac{2 a b \cos ^2(c+d x)^{\frac{m+1}{2}} \tan ^{m+1}(c+d x) \sin ^n(c+d x) \, _2F_1\left (\frac{m+1}{2},\frac{1}{2} (m+n+1);\frac{1}{2} (m+n+3);\sin ^2(c+d x)\right )}{d (m+n+1)}+\frac{b^2 \cos ^2(c+d x)^{\frac{m+1}{2}} \tan ^{m+1}(c+d x) \sin ^{2 n}(c+d x) \, _2F_1\left (\frac{m+1}{2},\frac{1}{2} (m+2 n+1);\frac{1}{2} (m+2 n+3);\sin ^2(c+d x)\right )}{d (m+2 n+1)} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sin[c + d*x]^n)^2*Tan[c + d*x]^m,x]

[Out]

(a^2*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, -Tan[c + d*x]^2]*Tan[c + d*x]^(1 + m))/(d*(1 + m)) + (2*a*b*(C
os[c + d*x]^2)^((1 + m)/2)*Hypergeometric2F1[(1 + m)/2, (1 + m + n)/2, (3 + m + n)/2, Sin[c + d*x]^2]*Sin[c +
d*x]^n*Tan[c + d*x]^(1 + m))/(d*(1 + m + n)) + (b^2*(Cos[c + d*x]^2)^((1 + m)/2)*Hypergeometric2F1[(1 + m)/2,
(1 + m + 2*n)/2, (3 + m + 2*n)/2, Sin[c + d*x]^2]*Sin[c + d*x]^(2*n)*Tan[c + d*x]^(1 + m))/(d*(1 + m + 2*n))

Rule 3234

Int[((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol]
 :> Int[ExpandTrig[(d*tan[e + f*x])^m*(a + b*(c*sin[e + f*x])^n)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n},
x] && IGtQ[p, 0]

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 2602

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(a*Cos[e + f
*x]^(n + 1)*(b*Tan[e + f*x])^(n + 1))/(b*(a*Sin[e + f*x])^(n + 1)), Int[(a*Sin[e + f*x])^(m + n)/Cos[e + f*x]^
n, x], x] /; FreeQ[{a, b, e, f, m, n}, x] &&  !IntegerQ[n]

Rule 2577

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b^(2*IntPart
[(n - 1)/2] + 1)*(b*Cos[e + f*x])^(2*FracPart[(n - 1)/2])*(a*Sin[e + f*x])^(m + 1)*Hypergeometric2F1[(1 + m)/2
, (1 - n)/2, (3 + m)/2, Sin[e + f*x]^2])/(a*f*(m + 1)*(Cos[e + f*x]^2)^FracPart[(n - 1)/2]), x] /; FreeQ[{a, b
, e, f, m, n}, x]

Rubi steps

\begin{align*} \int \left (a+b \sin ^n(c+d x)\right )^2 \tan ^m(c+d x) \, dx &=\int \left (a^2 \tan ^m(c+d x)+2 a b \sin ^n(c+d x) \tan ^m(c+d x)+b^2 \sin ^{2 n}(c+d x) \tan ^m(c+d x)\right ) \, dx\\ &=a^2 \int \tan ^m(c+d x) \, dx+(2 a b) \int \sin ^n(c+d x) \tan ^m(c+d x) \, dx+b^2 \int \sin ^{2 n}(c+d x) \tan ^m(c+d x) \, dx\\ &=\frac{a^2 \operatorname{Subst}\left (\int \frac{x^m}{1+x^2} \, dx,x,\tan (c+d x)\right )}{d}+\left (2 a b \cos ^{1+m}(c+d x) \sin ^{-1-m}(c+d x) \tan ^{1+m}(c+d x)\right ) \int \cos ^{-m}(c+d x) \sin ^{m+n}(c+d x) \, dx+\left (b^2 \cos ^{1+m}(c+d x) \sin ^{-1-m}(c+d x) \tan ^{1+m}(c+d x)\right ) \int \cos ^{-m}(c+d x) \sin ^{m+2 n}(c+d x) \, dx\\ &=\frac{a^2 \, _2F_1\left (1,\frac{1+m}{2};\frac{3+m}{2};-\tan ^2(c+d x)\right ) \tan ^{1+m}(c+d x)}{d (1+m)}+\frac{2 a b \cos ^2(c+d x)^{\frac{1+m}{2}} \, _2F_1\left (\frac{1+m}{2},\frac{1}{2} (1+m+n);\frac{1}{2} (3+m+n);\sin ^2(c+d x)\right ) \sin ^n(c+d x) \tan ^{1+m}(c+d x)}{d (1+m+n)}+\frac{b^2 \cos ^2(c+d x)^{\frac{1+m}{2}} \, _2F_1\left (\frac{1+m}{2},\frac{1}{2} (1+m+2 n);\frac{1}{2} (3+m+2 n);\sin ^2(c+d x)\right ) \sin ^{2 n}(c+d x) \tan ^{1+m}(c+d x)}{d (1+m+2 n)}\\ \end{align*}

Mathematica [C]  time = 15.4473, size = 2368, normalized size = 11.01 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*Sin[c + d*x]^n)^2*Tan[c + d*x]^m,x]

[Out]

(2*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^m*((a^2*AppellF1[(1 + m)/2, m, 1, (3 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c
+ d*x)/2]^2])/(1 + m) + b*(Sec[(c + d*x)/2]^2)^n*Sin[c + d*x]^n*((2*a*AppellF1[(1 + m + n)/2, m, 1 + n, (3 + m
 + n)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])/(1 + m + n) + (b*AppellF1[1/2 + m/2 + n, m, 1 + 2*n, 3/2 +
m/2 + n, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*(Sec[(c + d*x)/2]^2)^n*Sin[c + d*x]^n)/(1 + m + 2*n)))*Tan[(
c + d*x)/2]*Tan[c + d*x]^m*(a^2*Tan[c + d*x]^m + 2*a*b*Sin[c + d*x]^n*Tan[c + d*x]^m + b^2*Sin[c + d*x]^(2*n)*
Tan[c + d*x]^m))/(d*(2*m*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^m*Sec[c + d*x]^2*((a^2*AppellF1[(1 + m)/2, m, 1, (3
 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])/(1 + m) + b*(Sec[(c + d*x)/2]^2)^n*Sin[c + d*x]^n*((2*a*App
ellF1[(1 + m + n)/2, m, 1 + n, (3 + m + n)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])/(1 + m + n) + (b*Appel
lF1[1/2 + m/2 + n, m, 1 + 2*n, 3/2 + m/2 + n, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*(Sec[(c + d*x)/2]^2)^n*
Sin[c + d*x]^n)/(1 + m + 2*n)))*Tan[(c + d*x)/2]*Tan[c + d*x]^(-1 + m) + Sec[(c + d*x)/2]^2*(Cos[c + d*x]*Sec[
(c + d*x)/2]^2)^m*((a^2*AppellF1[(1 + m)/2, m, 1, (3 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])/(1 + m)
 + b*(Sec[(c + d*x)/2]^2)^n*Sin[c + d*x]^n*((2*a*AppellF1[(1 + m + n)/2, m, 1 + n, (3 + m + n)/2, Tan[(c + d*x
)/2]^2, -Tan[(c + d*x)/2]^2])/(1 + m + n) + (b*AppellF1[1/2 + m/2 + n, m, 1 + 2*n, 3/2 + m/2 + n, Tan[(c + d*x
)/2]^2, -Tan[(c + d*x)/2]^2]*(Sec[(c + d*x)/2]^2)^n*Sin[c + d*x]^n)/(1 + m + 2*n)))*Tan[c + d*x]^m + 2*m*(Cos[
c + d*x]*Sec[(c + d*x)/2]^2)^(-1 + m)*((a^2*AppellF1[(1 + m)/2, m, 1, (3 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c +
 d*x)/2]^2])/(1 + m) + b*(Sec[(c + d*x)/2]^2)^n*Sin[c + d*x]^n*((2*a*AppellF1[(1 + m + n)/2, m, 1 + n, (3 + m
+ n)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])/(1 + m + n) + (b*AppellF1[1/2 + m/2 + n, m, 1 + 2*n, 3/2 + m
/2 + n, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*(Sec[(c + d*x)/2]^2)^n*Sin[c + d*x]^n)/(1 + m + 2*n)))*Tan[(c
 + d*x)/2]*(-(Sec[(c + d*x)/2]^2*Sin[c + d*x]) + Cos[c + d*x]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])*Tan[c + d*x
]^m + 2*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^m*Tan[(c + d*x)/2]*(b*n*Cos[c + d*x]*(Sec[(c + d*x)/2]^2)^n*Sin[c +
d*x]^(-1 + n)*((2*a*AppellF1[(1 + m + n)/2, m, 1 + n, (3 + m + n)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])
/(1 + m + n) + (b*AppellF1[1/2 + m/2 + n, m, 1 + 2*n, 3/2 + m/2 + n, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*
(Sec[(c + d*x)/2]^2)^n*Sin[c + d*x]^n)/(1 + m + 2*n)) + b*n*(Sec[(c + d*x)/2]^2)^n*Sin[c + d*x]^n*((2*a*Appell
F1[(1 + m + n)/2, m, 1 + n, (3 + m + n)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])/(1 + m + n) + (b*AppellF1
[1/2 + m/2 + n, m, 1 + 2*n, 3/2 + m/2 + n, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*(Sec[(c + d*x)/2]^2)^n*Sin
[c + d*x]^n)/(1 + m + 2*n))*Tan[(c + d*x)/2] + (a^2*(-(((1 + m)*AppellF1[1 + (1 + m)/2, m, 2, 1 + (3 + m)/2, T
an[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/(3 + m)) + (m*(1 + m)*AppellF1[1
+ (1 + m)/2, 1 + m, 1, 1 + (3 + m)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x
)/2])/(3 + m)))/(1 + m) + b*(Sec[(c + d*x)/2]^2)^n*Sin[c + d*x]^n*((b*n*AppellF1[1/2 + m/2 + n, m, 1 + 2*n, 3/
2 + m/2 + n, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Cos[c + d*x]*(Sec[(c + d*x)/2]^2)^n*Sin[c + d*x]^(-1 + n
))/(1 + m + 2*n) + (b*n*AppellF1[1/2 + m/2 + n, m, 1 + 2*n, 3/2 + m/2 + n, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/
2]^2]*(Sec[(c + d*x)/2]^2)^n*Sin[c + d*x]^n*Tan[(c + d*x)/2])/(1 + m + 2*n) + (b*(Sec[(c + d*x)/2]^2)^n*Sin[c
+ d*x]^n*(-(((1/2 + m/2 + n)*(1 + 2*n)*AppellF1[3/2 + m/2 + n, m, 2 + 2*n, 5/2 + m/2 + n, Tan[(c + d*x)/2]^2,
-Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/(3/2 + m/2 + n)) + (m*(1/2 + m/2 + n)*AppellF1[3/2 +
 m/2 + n, 1 + m, 1 + 2*n, 5/2 + m/2 + n, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c +
d*x)/2])/(3/2 + m/2 + n)))/(1 + m + 2*n) + (2*a*(-(((1 + n)*(1 + m + n)*AppellF1[1 + (1 + m + n)/2, m, 2 + n,
1 + (3 + m + n)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/(3 + m + n))
+ (m*(1 + m + n)*AppellF1[1 + (1 + m + n)/2, 1 + m, 1 + n, 1 + (3 + m + n)/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*
x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/(3 + m + n)))/(1 + m + n)))*Tan[c + d*x]^m))

________________________________________________________________________________________

Maple [F]  time = 180., size = 0, normalized size = 0. \begin{align*} \int \left ( a+b \left ( \sin \left ( dx+c \right ) \right ) ^{n} \right ) ^{2} \left ( \tan \left ( dx+c \right ) \right ) ^{m}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sin(d*x+c)^n)^2*tan(d*x+c)^m,x)

[Out]

int((a+b*sin(d*x+c)^n)^2*tan(d*x+c)^m,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sin \left (d x + c\right )^{n} + a\right )}^{2} \tan \left (d x + c\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c)^n)^2*tan(d*x+c)^m,x, algorithm="maxima")

[Out]

integrate((b*sin(d*x + c)^n + a)^2*tan(d*x + c)^m, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b^{2} \sin \left (d x + c\right )^{2 \, n} + 2 \, a b \sin \left (d x + c\right )^{n} + a^{2}\right )} \tan \left (d x + c\right )^{m}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c)^n)^2*tan(d*x+c)^m,x, algorithm="fricas")

[Out]

integral((b^2*sin(d*x + c)^(2*n) + 2*a*b*sin(d*x + c)^n + a^2)*tan(d*x + c)^m, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c)**n)**2*tan(d*x+c)**m,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sin \left (d x + c\right )^{n} + a\right )}^{2} \tan \left (d x + c\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c)^n)^2*tan(d*x+c)^m,x, algorithm="giac")

[Out]

integrate((b*sin(d*x + c)^n + a)^2*tan(d*x + c)^m, x)